Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
J. venom. anim. toxins incl. trop. dis ; 21: 1-9, 31/03/2015. ilus, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1484631

ABSTRACT

Background Considering the similarity between the testis-specific isoform of angiotensin-converting enzyme and the C-terminal catalytic domain of somatic ACE as well as the structural and functional variability of its natural inhibitors, known as bradykinin-potentiating peptides (BPPs), the effects of different synthetic peptides, BPP-10c ( ENWPHQIPP), BPP-11e ( EARPPHPPIPP), BPP-AP ( EARPPHPPIPPAP) and captopril were evaluated in the seminiferous epithelium of male mice.Methods The adult animals received either one of the synthetic peptides or captopril (120 nmol/dose per testis) via injection into the testicular parenchyma. After seven days, the mice were sacrificed, and the testes were collected for histopathological evaluation.Results BPP-10c and BPP-AP showed an intense disruption of the epithelium, presence of atypical multinucleated cells in the lumen and high degree of seminiferous tubule degeneration, especially in BPP-AP-treated animals. In addition, both synthetic peptides led to a significant reduction in the number of spermatocytes and round spermatids in stages I, V and VII/VIII of the seminiferous cycle, thickness of the seminiferous epithelium and diameter of the seminiferous tubule lumen. Interestingly, no morphological or morphometric alterations were observed in animals treated with captopril or BPP-11e.Conclusions The major finding of the present study was that the demonstrated effects of BPP-10c and BPP-AP on the seminiferous epithelium are dependent on their primary structure and cannot be extrapolated to other BPPs.


Subject(s)
Male , Animals , Mice , Angiotensins , Bothrops , Seminiferous Epithelium , Enzyme Inhibitors , Crotalid Venoms
2.
J. venom. anim. toxins incl. trop. dis ; 21: 27, 31/03/2015. tab, ilus, graf
Article in English | LILACS, VETINDEX | ID: biblio-954771

ABSTRACT

Background Considering the similarity between the testis-specific isoform of angiotensin-converting enzyme and the C-terminal catalytic domain of somatic ACE as well as the structural and functional variability of its natural inhibitors, known as bradykinin-potentiating peptides (BPPs), the effects of different synthetic peptides, BPP-10c (<ENWPHQIPP), BPP-11e (<EARPPHPPIPP), BPP-AP (<EARPPHPPIPPAP) and captopril were evaluated in the seminiferous epithelium of male mice.Methods The adult animals received either one of the synthetic peptides or captopril (120 nmol/dose per testis) via injection into the testicular parenchyma. After seven days, the mice were sacrificed, and the testes were collected for histopathological evaluation.Results BPP-10c and BPP-AP showed an intense disruption of the epithelium, presence of atypical multinucleated cells in the lumen and high degree of seminiferous tubule degeneration, especially in BPP-AP-treated animals. In addition, both synthetic peptides led to a significant reduction in the number of spermatocytes and round spermatids in stages I, V and VII/VIII of the seminiferous cycle, thickness of the seminiferous epithelium and diameter of the seminiferous tubule lumen. Interestingly, no morphological or morphometric alterations were observed in animals treated with captopril or BPP-11e.Conclusions The major finding of the present study was that the demonstrated effects of BPP-10c and BPP-AP on the seminiferous epithelium are dependent on their primary structure and cannot be extrapolated to other BPPs.(AU)


Subject(s)
Animals , Mice , Seminiferous Epithelium , Snake Venoms , Angiotensin-Converting Enzyme Inhibitors , Bothrops , Protein Isoforms
3.
J. venom. anim. toxins incl. trop. dis ; 19: 28, maio 2013. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-954709

ABSTRACT

Background The testis-specific isoform of angiotensin-converting enzyme (tACE) is exclusively expressed in germ cells during spermatogenesis. Although the exact role of tACE in male fertility is unknown, it clearly plays a critical function in spermatogenesis. The dipeptidase domain of tACE is identical to the C-terminal catalytic domain of somatic ACE (sACE). Bradykinin potentiating peptides (BPPs) from snake venoms are the first natural sACE inhibitors described and their structure-activity relationship studies were the basis for the development of antihypertensive drugs such as captopril. In recent years, it has been showed that a number of BPPs - including BPP-10c - are able to distinguish between the N- and C-active sites of sACE, what is not applicable to captopril. Considering the similarity between tACE and sACE (and since BPPs are able to distinguish between the two active sites of sACE), the effects of the BPP-10c and captopril on the structure and function of the seminiferous epithelium were characterized in the present study. BPP-10c and captopril were administered in male Swiss mice by intraperitoneal injection (4.7 μmol/kg for 15 days) and histological sections of testes were analyzed. Classification of seminiferous tubules and stage analysis were carried out for quantitative evaluation of germ cells of the seminiferous epithelium. The blood-testis barrier (BTB) permeability and distribution of claudin-1 in the seminiferous epithelium were analyzed by hypertonic fixative method and immunohistochemical analyses of testes, respectively. Results The morphology of seminiferous tubules from animals treated with BPP-10c showed an intense disruption of the epithelium, presence of atypical multinucleated cells in the lumen and degenerated germ cells in the adluminal compartment. BPP-10c led to an increase in the number of round spermatids and total support capacity of Sertoli cell in stages I, V, VII/VIII of the seminiferous epithelium cycle, without affecting BTB permeability and the distribution of claudin-1 in the seminiferous epithelium. Interestingly, no morphological or morphometric alterations were observed in animals treated with captopril. Conclusions The major finding of the present study was that BPP-10c, and not captopril, modifies spermatogenesis by causing hyperplasia of round spermatids in stages I, V, and VII/VIII of the spermatogenic cycle.(AU)


Subject(s)
Animals , Peptides , Seminiferous Epithelium , Seminiferous Tubules , Snake Venoms , Bradykinin , Bothrops/anatomy & histology
4.
Ciênc. cult. (Säo Paulo) ; 51(5/6): 429-35, set.-dez. 1999. ilus, tab, graf
Article in English | LILACS | ID: lil-260628

ABSTRACT

In this article we emphasize the importante of the snake venom toxins for the development of the autopharmacology concept (Sir Henry Dale, 1933) and how they led to the discovery of bradykinin and to the development of the first active-site directed inhibitor of the angiotensin converting enzyme. We also describe the most recent development concerning the possible role of bradykinin potentiating peptides from Bothrops jararaca venom for the cardiovascular pharmacology. A fundamental step leading to what can be considered one of the most significant contributions given by Brazilian scientists to biomedical sciences, was originated in the efforts of Rocha e Silva to identify and characterize the actors involved in anaphylaxis. His main scientific motivation and efforts which influenced a whole generation of prominent Brazilian scientists, should be reminded when we are commemorating the 50th anniversary of the bradykinin discovery. One important consequence of the use of the Bothrops jararaca venom leading to the discovery of bradykinin was the development of captopril, the most successful drug used by milions of people all over the world to treat arterial hypertension. The purpose of this article is to dissect some of the historical background which aim to stress the need for the adequate scientific environment allowing the privileged scientific minds to uncover secrets of Nature for the benefit of mankind.


Subject(s)
Animals , Bothrops , Bradykinin/therapeutic use , Crotalid Venoms , Angiotensin-Converting Enzyme Inhibitors/history , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Bradykinin/history , Captopril/history , Captopril/therapeutic use , Crotalid Venoms/pharmacokinetics , Crotalid Venoms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL